Numerical investigation of the effectiveness of a step-shaped trench in reducing train-induced vibrations

Author:

Zakeri Jabbar-Ali1,Esmaeili Morteza1,Mosayebi Seyed-Ali1

Affiliation:

1. School of Railway Engineering, Iran University of Science and Technology, Iran

Abstract

In this paper, a step-shaped trench was introduced for the attenuation of train-induced vibration levels on trackside buildings. In order to evaluate the effectiveness of the proposed type of trench in comparison with a standard rectangular trench, a two-dimensional finite element model was developed under plane strain conditions using the ABAQUS software. The validity of the preliminary model of the track including a rectangular-shaped trench was confirmed by a close agreement of obtained results with those of previous studies. The effectiveness of the step-shaped trench compared with the rectangular type was studied in open and in-filled forms in terms of decreasing the effects of ground-borne vibrations on trackside structures. The obtained results for open and in-filled step-shaped trenches respectively showed 21% and 26.2% decreases in the maximum amplitude reduction ratio with respect to the common rectangular trench. Moreover, in the case of a real train moving loads, the proposed trench shape further decreased the values of peak particle velocity, root mean square and particle velocity decibel on a trackside structure compared with the values obtained for a rectangular-shaped trench.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3