Application of in situ polyurethane geocomposite beams to improve the passive shoulder resistance of railway track

Author:

Woodward P K1,Kennedy J2,Medero G M1,Banimahd M2

Affiliation:

1. School of the Built Environment, Heriot-Watt University, Edinburgh, UK

2. Technip, Geotechnical Engineering Department, Aberdeen UK (formally Heriot-Watt University)

Abstract

Recent research has highlighted the effect of the individual contributions of the crib, shoulder, and base resistance to the lateral behaviour of a typical railway sleeper under loading. The contribution of the shoulder ballast has been seen to provide around 30 per cent of the lateral resistance for an unloaded sleeper. The addition of extra ballast in the shoulder area provides a very limited increase in lateral sleeper resistance. It is common in areas of high lateral loading, such as switch and crossings, to provide sleeper end plates to improve the passive resistance of the track. Sleeper end plates have, however, many disadvantages, not least is the need to disturb the ballast in order to facilitate their installation. The application of polyurethane reinforcement of the ballast shoulder to rapidly form an in situ GeoComposite shoulder beam (geobeam) has many advantages over end plates, including the ability of the lateral beam to be installed directly after the track geometry has been corrected; the lateral track geometry can then be ‘captured’ at installation. The beam can also be formed while the trains are still running. In this article the application of lateral GeoComposite side beams to improve the passive resistance of the shoulders is illustrated through analytical and numerical analysis. The application of the technique to actual problem sites is also presented and the performance of the technique at the Harford bridge transition site discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3