A comprehensive prediction model for vehicle/track/soil dynamic response due to wheel flats

Author:

Alexandrou Georgios1,Kouroussis Georges1,Verlinden Olivier1

Affiliation:

1. University of Mons – UMONS, Faculty of Engineering, Department of Theoretical Mechanics, Dynamics and Vibrations, Mons, Belgium

Abstract

With the development of new lines and the increase of traffic on existing lines, the problem caused by railway-induced ground vibrations is becoming bigger and bigger. The present paper focuses on wheel flat modelling in prediction schemes which determine railway-induced ground vibrations and which have applications to urban tramways. A comprehensive flat spot model is developed and included in an existing vehicle/track model taking into account Hertz's contact law. The associated non-linear stiffness is calculated in a pre-processing step by solving the three-dimensional wheel/rail contact problem. A two-step approach for predicting ground vibrations, developed by the authors, is then applied, including the track/soil interaction through a foundation model and the ground wave propagation by means of a fully three-dimensional finite element model. Predicted results are presented, based on the T2006 tram and on the railway site of Haren (Belgium). A specific analysis is proposed for studying the vehicle dynamics on flexible tracks, and for calculating the effect provided by the wheel flat impact on the rail heads. Results related to the contact force between the wheel with a flat spot and the rail are presented. A series of periodic impacts are generated when the flat spot comes into contact with the rail head with magnitude depending on the track flexibility at the contact point. The key conclusions are discussed, based on the sensitivity analysis of the flat spot size and the train speed. Both parameters affect the critical speed of the vehicle/track system, defined as the speed where loss of contact occurs. The ground vibration levels were found to increase with speed and decrease with distance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3