A field test study of airborne wear particles from a running regional train

Author:

Abbasi S1,Olander L2,Larsson C3,Olofsson U1,Jansson A4,Sellgren U1

Affiliation:

1. Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden

2. Building Service Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

3. Bombardier Transportation Sweden AB, Västerås, Sweden

4. Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Abstract

Inhalable airborne particles have inverse health effects. In railways, mechanical brakes, the wheel–rail contact, current collectors, ballast, sleepers, and masonry structures yield particulate matter. Field tests examined a Swedish track using a train instrumented with particle measurement devices, brake pad temperature sensors, and speed and brake sensors. The main objective of this field test was to study the characteristics of particles generated from disc brakes on a running train with an on-board measuring set-up. Two airborne particle sampling points were designated, one near a pad–rotor disc brake contact and a second under the frame, not near a mechanical brake or the wheel–rail contact; the numbers and size distributions of the particles detected were registered and evaluated under various conditions (e.g. activating/deactivating electrical brakes or negotiating curves). During braking, three speed/temperature-dependent particle peaks were identified in the fine region, representing particles 280, 350, and 600 nm in diameter. In the coarse region, a peak was discerned for particles 3–6 µm in diameter. Effects of brake pad temperature on particle size distribution were also investigated. Results indicate that the 280-nm peak increased with increasing temperature, and that electrical braking significantly reduced airborne particle numbers. Field emission scanning electron microscope images captured particles sizing down to 50 nm. The inductively coupled plasma mass spectrometry results indicated that Fe, Cu, Zn, Al, Ca, and Mg were the main elements constituting the particles.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3