Affiliation:
1. School of Civil Engineering, Beijing Jiaotong University, Beijing, China
2. Engineering Structures Department, Delft University of Technology, Delft, Netherlands
3. School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
Transition zones between railway tracks and bridge decks can cause higher dynamic impacts. A solution is smoothly changing the track stiffness by gradually mixing steel furnace slag into the stone ballast. A nominated bridge transition zone is divided into 5 blocks of 7 meters long, with the mixing percentages of 0%, 25%, 50%, 75% and 100%. The mechanical behaviors of furnace slag-ballast combinations (FS-BCs) were studied using experiments of shear strength test, Los Angles abrasion index and plate load test. Furthermore, the dynamic behavior of bridge transition zone with FS-BCs blocks was investigated using a field validated FEM model. Results show that the 100%, 75%, 50% and 25% furnace slag by weight of ballast can increase the shear strength and ballast layer bending modulus by 13%, 12%, 9% and 7% at speed of 300 km/h compared with those of the stone ballast. The FEM study shows that rail deflections are reduced about 20%, 14%, 21% and 16% at speed of 300 km/h corresponding to 100%, 75%, 50% and 25% FS-BCs and accelerations are significantly reduced as well as increasing FS content of each block in bridge transition zone so that a smooth bridge transition zone can be achieved.
Funder
Natural Science Foundation of China
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献