Data-driven model for maintenance decision support: A case study of railway signalling systems

Author:

Morant Amparo1,Larsson-Kråik Per-Olof12,Kumar Uday1

Affiliation:

1. Luleå Railway Research Center, Luleå University of Technology, Sweden

2. Trafikverket, Luleå, Sweden

Abstract

Signalling systems ensure the safe operation of the railway network. Their reliability and maintainability directly affect the capacity and availability of the railway network, in terms of both infrastructure and trains, as a line cannot be fully operative until a failure has been repaired. The purpose of this paper is to propose a data-driven decision support model that integrates the various parameters of corrective maintenance data and to study maintenance performance by considering different reliability, availability, maintainability and safety parameters. This model is based on failure analysis of historical events in the form of corrective maintenance actions. It has been validated in a case study of railway signalling systems and the results are summarised. The model allows the creation of maintenance policies based on failure characteristics, as it integrates the information recorded in the various parameters of the corrective maintenance work orders. The model shows how the different failures affect the dependability of the system: the critical failures indicate the reliability of the system, the corrective actions give information about the maintainability of the components, and the relationship between the corrective maintenance times measures the efficiency of the corrective maintenance actions. All this information can be used to plan new strategies of preventive maintenance and failure diagnostics, reduce the corrective maintenance and improve the maintenance performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3