Development of track component health indices using image-based railway track inspection data

Author:

Germoglio Barbosa Ian1ORCID,Lima Arthur de O1ORCID,Edwards J. Riley1ORCID,Dersch Marcus S1ORCID

Affiliation:

1. Rail Transportation and Engineering Center – RailTEC, Department of Civil and Environmental Engineering, Grainger College of Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA

Abstract

The primary role of the US Department of Transportation (USDOT) Federal Railroad Administration (FRA) is ensuring the safe operation of railway rolling stock and infrastructure by way of regulatory oversight. FRA regulations require US railroads to conduct visual track inspections as often as twice per week depending on a specific track segment’s FRA track class, which also governs maximum train operating speed. Such inspections are often subjective due to the inherent limitations of human visual inspection and cognition. Additionally, human visual inspections require some level of risk given the need for inspectors to be on track while also consuming valuable network capacity. As a result, and the desire to collect objective data to improve both safety and maintenance planning, railroads are pursuing new means and methods to assess track condition and evaluate track component health. This paper presents a numerical method to define track component health using field data collected on the High Tonnage Loop (HTL) at the Transportation Technology Center (TTC) in Pueblo, Colorado, USA. Line scan laser and image data of the track were captured using a 3D Laser Triangulation system and were subsequently processed using Deep Convolutional Neural Networks (DCNNs). The track heath quantification method proposed establishes benchmarks that were developed based on the understanding of railway track mechanics, high axle load (HAL) railroad engineering instructions, and FRA regulations. The novel metrics presented are referred to as Track Component Heath Indices (TCHIs) and are quantitative values that objectively assess track condition and provide a means to monitor condition change with time and tonnage. These data can be used in conjunction with traditional track geometry and other forms of track heath data (e.g. GPR and rail profile) to more holistically assess the condition of the track structure and its components and ultimately predict its future state.

Funder

Federal Railroad Administration

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3