A laser scanner based approach for identifying rail surface squat defects

Author:

De Becker D1ORCID,Dobrzanski J1,Justham L1,Goh YM1

Affiliation:

1. Intelligent Automation Centre, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

Abstract

The defect identification process within the UK rail industry has seen significant improvements over the past decade with the introduction of new measurement systems and defect detection systems. Although significant work has been on the defect identification little work has been done on the process after the defect has been detected. This repair process is still extremely manual. Due to the current process being manual the repair operation has very little traceability and transparency. This paper has therefore presented the need for not only a defect detection system but a defect repair system for the UK railway industry. Further to this, this paper has acknowledged that the rise of defects occurring on the UK railway lines requires a solution that can fully repair a defect with little to no user intervention in a timely manner. To address this, this paper has taken the extremely manual process of rail repair and has laid out the possibilities to automate this process. By doing this a work flow diagram has been generated to show how the system could be used to repair surface defects with a specific focus being made on squat defects. To achieve this a defect detection and measurement system has been explored, as this will make up the first stage of the automated repair system. The literature on various defect detection algorithms was reviewed and two variations of existing defect detection algorithms were created, i.e. the Covariance method and the Normal Intersection method. These algorithms have been tested against 100 simulated squat defects and have been verified using 4 experimentally generated defects. Both algorithms have been proven to not only identify the approximate size of the defect but also its location. This successful defect identification will be integrated into an automated rail repair system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3