An investigation into the constitutive relation of corrugated metro rail material based on nano-indentation experiment and inverse analysis

Author:

Chen Shuai1ORCID,Zhao Guotang12,Han Jian3,Wang Ping1,Wang Hengyu4

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

2. China Railway Corporation, Beijing, China

3. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

4. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China

Abstract

To establish the constitutive relation of corrugated rail material, rail corrugation was reproduced. The material mechanical properties of corrugation peaks and troughs were obtained by experiment. A set of dimensionless functions was proposed for the elastic modulus, hardness and yield stress at arbitrary depth of corrugation peaks and troughs. By combining the finite element model and dimensional functions, the constitutive relations were obtained at different vertical and lateral positions of corrugation. The closer the material is to the rail surface, the larger the mechanical property values. The elastic modulus and hardness of corrugated rail material at the trough surface are higher than those at the peak, while the yield stress at the peak surface is higher than the trough.

Funder

Science and the Technology Program of Sichuan Province of China

National Natural Science Foundation of China

Supported by the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3