A numerical train–floating slab track coupling model based on the periodic-Fourier-modal method

Author:

Ma Longxiang12,Liu Weining3

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

2. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China

3. School of Civil Engineering, Beijing Jiaotong University, Beijing, China

Abstract

A numerical model based on the periodic-Fourier-modal method is proposed for the dynamic analysis of a train-floating slab track coupling system with random track irregularity. In the model, each vehicle of the train is modeled as a multiple-degree-of-freedom vibration system consisting of one car body, two bogies, four wheelsets, and two groups of spring-damper suspension devices. The floating slab track is modeled as a periodic-infinite structure with discrete supports and discontinuous slabs. Linear springs are used to couple the train and the track. In order to establish this numerical model, an efficient periodic approach named periodic-Fourier-modal method for solving the dynamic response of the floating slab track under a harmonic moving load is first developed. Based on this, a strategy is then proposed which can couple the moving train to the track with random irregularity and express the wheel–rail force as a superposition of a series of harmonic loads. With the solved wheel–rail force, the vehicle response can be directly calculated through vehicle dynamics, while track response can be calculated through the principle of superposition and the reuse of the initially proposed periodic-Fourier-modal method. Using this train–floating slab track coupling model, the solution of the dynamic response of the infinite track can be transformed to perform only within a single periodic range, which can save the calculation time significantly. The numerical results of the Beijing subway, based on the proposed model, are discussed in detail, and some important conclusions are drawn.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3