An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery

Author:

Deilamsalehy Hanieh1,Havens Timothy C1,Lautala Pasi1,Medici Ezequiel1,Davis James1

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, USA

Abstract

One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock components. Railway wheels and wheel bearings are the two components prone to damages due to their interactions with brakes and railway track, which makes them a high priority when the rail industry investigates improvements in the current detection processes. One of the specific wheel defects is a flat wheel, which is often caused by a sliding wheel during a heavy braking application. The main contribution of this paper is the development of a computer vision method for automatically detecting the sliding wheels from images taken by wayside thermal cameras. As a byproduct, the process will also include a method for detecting hot bearings from the same images. We first discuss our automatic detection and segmentation method, which identifies the wheel and bearing portion of the image. Then, we develop a method, using histogram of oriented gradients to extract the features of these regions. These feature descriptors are later employed by support vector machine to build a fast classifier with a good detection rate, which can detect abnormalities in the wheel. At the end, we train our algorithm using simulated images of sliding wheels and test it on several thermal images collected in a revenue service by the Union Pacific Railroad in North America.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3