Semi-empirical model of internal pressure for a high-speed train under the excitation of tunnel pressure waves

Author:

Chen Chun-jun12,He Zhi-ying1ORCID,Feng Yong-ping1,Yang Lu1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, China

2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Chengdu, China

Abstract

To study the transmission of air pressure from external to internal carriage of high-speed trains, an internal pressure model excited by tunnel pressure wave is established. Firstly, factors affecting the air pressure transmission are analysed. Then, the semi-empirical models of the internal pressure caused by a single factor are established based on both the theoretical analysis and experimental data: (1) by applying the finite element method, effects of carbody deformation are studied; (2) based on the static air tightness test, the transmission from the gaps is modelled and (3) the model of the air ducts are surveyed on the base of the characteristics of the ventilation fans and valves. Finally, three routes are comprehensively considered and a coupling model of the internal pressure is established. Simulation results shows the model is adaptable in predicting the internal pressure under excitation of tunnel pressure waves. Besides, the effect of the factors on internal pressure are studied based on the models. Among the factors, the deformation has the least effect. Meanwhile, the air ducts are the dominant factor that affects the internal pressure at high opening degree, while the gaps will become the dominant factor when the opening degree of air ducts is relatively low.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3