Analysis based on the energy release rate criterion of a dynamically growing crack approaching an interface

Author:

Djoković Jelena M1,Nikolić Ružica R23,Šumarac Dragoslav M4,Bujnak Jan5

Affiliation:

1. Technical Faculty of Bor, University of Belgrade, Serbia

2. Faculty of Engineering, University of Kragujevac, Serbia

3. Research Center, University of Žilina, Slovakia

4. Faculty of Civil Engineering, University of Belgrade, Serbia

5. Faculty of Civil Engineering, University of Žilina, Slovakia

Abstract

A problem of a dynamically growing crack, which is approaching an interface between the two elastic isotropic materials at an arbitrary angle, is considered in this paper. That crack could behave in three ways: (i) it can arrest at contact with the interface, (ii) it can deflect into the interface and continue to propagate along it or (iii) the crack can penetrate the interface and continue to propagate in the material across it. The competition between the latter two cases can be estimated by considering the ratio of the energy release rates necessary for the crack penetrating the interface and for the crack deflecting into the interface. A concept that the criterion for the dynamic crack growth in homogeneous solids could be based on the static stress field, with addition of the stress intensity factor dependent on time, is used here to explain the behavior of the crack approaching the interface in dynamic loading conditions. Obtained results enable comparison of the interface dynamic fracture toughness to the fracture toughness of the base material (without the interface), to determine whether the incoming crack would deflect into or would penetrate the interface. If the ratio between the dynamic fracture toughness of the interface and the dynamic fracture toughness of the material into which the crack continues to propagate was less than the ratio of the dynamic release rates for the deflecting and penetrating crack, the incoming crack would deflect into the interface. If the case was reversed, the crack would cross the interface and continue to propagate in the material across it. Comparison of results for the load phase angle dependence on the crack tip propagation speed and on the approaching angle, obtained by this criterion and by the maximum stress direction criterion, proves the validity of the energy release rate concept adopted in this analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3