Stochastic micromechanical predictions for the effective properties of concrete considering the interfacial transition zone effects

Author:

Chen Qing1,Zhu Hehua23,Ju JW4,Jiang Zhengwu1,Yan Zhiguo23,Li Haoxin1

Affiliation:

1. Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, Shanghai, China

2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

3. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai, China

4. Department of Civil and Environmental Engineering, University of California, Los Angeles, USA

Abstract

A stochastic micromechanical framework for predicting the concrete probabilistic behavior is proposed considering the interfacial transition zone effects in this paper. The volume fraction of the interfacial transition zone is analytically calculated based on the aggregate grading. Multilevel homogenization schemes based on the direct interaction micromechanical solutions are presented to predict the concrete effective properties considering the aggregate and interfacial transition zone effects. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the inherent randomness of effective properties among different concrete specimens. With the moments of the effective properties, the probability density function is approximated using the exponential polynomial for concrete material. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions, and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material’s effective properties. Finally, the effects of the randomness of interfacial transition zone and aggregate on the materials’ macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3