Parameter estimation of a rate-dependent damage constitutive model for damage-tolerant brittle composites by Self-OPTIM analyses

Author:

Shang Shen1,Yun Gun Jin1,Kim Bong-Rae2,Lee Haeng-Ki3

Affiliation:

1. Department of Civil Engineering, The University of Akron, USA

2. Civil & Architectural Engineering Group, KEPCO Engineering & Construction Company, Inc., South Korea

3. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, South Korea

Abstract

This article demonstrates a novel parameter identification of a rate-dependent damage constitutive model using self-optimizing inverse method. In the self-optimizing inverse method, an implicit–explicit objective function is formulated as a function of two sets of full-field stresses/strains (implicit non-measurable variables) from two nonlinear finite element analyses, that is, force-driven and displacement-driven simulations, respectively, and global boundary displacements and forces (explicit measurable variables) from experimental tests. The self-optimizing inverse method can self-correct the damage parameter set through optimization procedures referring to global responses measured in laboratory tests. A micromechanics and fracture mechanics based damage constitutive law that accounts for the microcrack nucleation and growth is adopted. Synthetic data from impact tension test simulations were used to demonstrate successful performances of the self-optimizing inverse method in identifying the nonlinear constitutive and damage-related parameters. Comparative studies were conducted using two different optimization techniques – the simplex method and the steady-state genetic algorithm. The identified parameters proved to be identical to the reference values. Finally, in order to further verify the inverse identification method, self-optimizing inverse method analyses were conducted to identify the damage parameter set based on real experimental data from impact tension tests at different strain rates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3