Affiliation:
1. Office National d'Etudes et de Recherches Aérospatiales, Département de Mécanique du Solide et de l'Endommagement, B.P. 72, 92322 Châtillon Cedex, France
Abstract
This paper describes a fatigue life prediction model accounting for high temperature applications of metallic materials. The formulation of the model is for general anisotropy and multiaxiality of loading. This phenomenological model distinguishes between an initiation phase and a propagation phase, and takes into account oxidation and creep effects on fatigue life. An application of the model is given for a coated single crystal superalloy for turbine blades. Model predictions are in good agreement with a large set of experimental data for mechanical loading including thermomechanical fatigue tests. A new experimental device, designed to produce a thermal gradient in the thickness of thin walled specimens, is also presented. This device has been used with polycrystalline and monocrystalline superalloys. Corresponding life predictions, performed by using recent anisotropic models, are presented for the single crystal superalloy.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献