Elastic–plastic-damage model of nano-indentation of the ion-irradiated 6061 aluminium alloy

Author:

Ustrzycka A1ORCID,Skoczeń B2,Nowak M1,Kurpaska Ł3,Wyszkowska E3,Jagielski J34

Affiliation:

1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

2. Cracow University of Technology, Institute of Applied Mechanics, Cracow, Poland

3. National Centre for Nuclear Research (NCBJ), Otwock Świerk, Poland

4. Institute of Electronic Materials Technology, Warsaw, Poland

Abstract

The paper presents experimental and numerical characterization of damage evolution for ion-irradiated materials subjected to plastic deformation during nano-indentation. Ion irradiation technique belongs to the methods where creation of radiation-induced defects is controlled with a high accuracy (including both, concentration and depth distribution control), and allows to obtain materials having a wide range of damage level, usually expressed in terms of displacements per atom (dpa) scale. Ion affected layers are usually thin, typically less than 1 micrometer thick. Such a low thickness requires to use nano-indentation technique to measure the mechanical properties of the irradiated layers. The He or Ar ion penetration depth reaches approximately 150 nm, which is sufficient to perform several loading-partial-unloading cycles at increasing forces. Damage evolution is reflected by the force-displacement diagram, that is backed by the stress–strain relation including damage. In this work the following approach is applied: dpa is obtained from physics (irradiation mechanisms), afterwards, the radiation-induced damage is defined in the framework of continuum damage mechanics to solve the problem of further evolution of damage fields under mechanical loads. The nature of radiation-induced damage is close to porosity because of formation of clusters of vacancies. The new mathematical relation between radiation damage (dpa) and porosity parameter is proposed. Deformation process experienced by the ion irradiated materials during the nano-indentation test is then numerically simulated by using extended Gurson–Tvergaard–Needleman (GTN) model, that accounts for the damage effects. The corresponding numerical results are validated by means of the experimental measurements. It turns out, that the GTN model quite successfully reflects closure of voids, and increase of material density during the nano-indentation.

Funder

Narodowe Centrum Nauki

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atomistic analysis of the mechanisms underlying irradiation-hardening in Fe–Ni–Cr alloys;International Journal of Plasticity;2024-11

2. The relationship between reinforcement ratio and e-beam irradiation in Y2O3 reinforced Al6061 Alloys: A crystallographic assessment;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-03

3. Modelling Irradiation Effects in Metallic Materials Using the Crystal Plasticity Theory—A Review;Crystals;2023-05-05

4. A peridynamic elasto-plastic damage model for ion-irradiated materials;International Journal of Mechanical Sciences;2023-01

5. CORRIGENDUM;International Journal of Damage Mechanics;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3