Characteristics of orthopaedic implants damage and mechanisms of its initiation

Author:

Łukaszewicz Adrian1,Kopec Mateusz2ORCID,Szczęsny Grzegorz3,Kowalewski Zbigniew L2

Affiliation:

1. Faculty of Advanced Technologies and Chemistry, Military University of Technology, Warsaw, Poland

2. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

3. Department of Orthopaedic Surgery and Traumatology, Medical University, Warsaw, Poland

Abstract

Implant fractures complicate orthopaedic procedures requiring secondary surgeries. However, it is not exactly known when the damage initiation starts and which factors predispose them to the highest degree. Thus, the aim of the study was to characterize changes observed in orthopaedic implants after their removal from the bone. Particular efforts were made to determine, which of them occur during the process of its production, installation, usage and removal. Such identification enabled to specify the role of lesions emerging during each period and their role in the implant’s deformation or fracture. The paper was focused on implants dedicated to the stabilization of the femur fractures since the bone transfers the highest loads. External surface and geometric features of eight representative implants were observed under standard and stereoscopic cameras, as well as under light and scanning electron microscopes. Macroscopic analysis of the investigated implants exhibited a number of defects in the form of scratches, abrasions, deformations and chipping. The wear degree of each implant was different and strictly depended on how it was implanted in the patient's body, as well as on how the patient exploited it through his mobility. Four different sources of implant integrity changes were identified: manufacturing-related changes, implant application-related changes, daily life-related changes and implant removal-related changes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3