Investigating the stress level impact on the creep rupture behaviour of 2195-T84 Al-Li alloy: Experimental and constitutive modelling

Author:

Li He1ORCID,Zhan Lihua123,Huang Minghui123,Liu Chunhui23,Zhao Xing23,Zhou Chang2,Chen Fei1

Affiliation:

1. Light Alloy Research Institute of Central South University, Changsha, China

2. School of Mechanical and Electrical Engineering, Central South University, Changsha, China

3. State Key Laboratory of High-Performance Complex Manufacturing, Changsha, China

Abstract

In the present study, the creep rupture behaviour and microstructural evolution of 2195-T84 Al-Li alloy are investigated at different tensile stresses. It is found that as the applied stress during the creep rupture process increases, the corresponding creep strain and creep rate significantly increase. Moreover, the evolution of microstructures, including precipitates, dislocation density and creep cavities at different stages is characterized using a transmission electron microscope (TEM), X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The main strengthening precipitates are identified as T1 (Al2CuLi) and θ′ (Al2Cu) phases. Obtained results show that as the applied stress increases, T1 and θ′ phases are gradually coarsened. This coarsening is more pronounced for θ′ phase. Furthermore, the creep cavities are mainly distributed at the interface between the insoluble second phase particles and the matrix, and their average sizes gradually increase as the applied stress increases. Meanwhile, the density and size of dimples on the fracture surface gradually decrease as the applied stress increases. Moreover, the main fracture mechanism changes from transgranular dimple fracture to quasi-cleavage fracture. Based on the microstructural evolution, a novel set of unified creep rupture constitutive model is proposed. The established model incorporates the evolution of microstructures, including the dislocation density, average length of T1 and θ′ precipitates and creep cavitation, and correlates microstructural variables with creep rate. The results calculated by the constitutive model are in good agreement with the experimental data, which validates the proposed model.

Funder

National Natural Science Foundation of China

the National key R&D Program of China

National Major Science and Technology Project

the project of State Key Laboratory of High-performance Complex Manufacturing

Fundamental Research Funds for the Central Universities of Central South University

National Defense Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3