Microstructural characterization and effective viscoelastic behavior of magnetorheological elastomers with varying acetone contents

Author:

Damiani Robbie1,Sun LZ1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA

Abstract

Magnetorheological elastomers (MREs), a class of polymer-based composites with dispersed ferromagnetic micro-particles, fall in the class of smart materials, because their macroscopic or effective rheological properties can be continuously, rapidly, and reversibly changed with the application of a magnetic field. Conventional magnetorheological elastomers exhibit poor mechanical properties and magnetorheological effect as a result of their matrix materials and the particle-matrix interfaces. Here, we investigate the effect of acetone contents on the magnetorheological elastomer microstructure at the interfacial regions using the scanning electron microscope and the three-dimensional nano-CT imaging, as well as determining the overall or effective mechanical properties of magnetorheological elastomers. It is shown that acetone increases both the overall storage modulus and loss factor along with the magnetorheological effect due to acetone’s reaction on the interface as well as its effect on iron particle alignment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3