A micro-structural model for prediction of void initiation in superplastic forming

Author:

Nedoushan Reza Jafari1,Farzin Mahmoud1,Mashayekhi Mohammad1

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Islamic Republic of Iran

Abstract

Superplastic forming has been used to produce complex parts without local thinning. Cavitations that occur during this procedure can reduce the quality of products. In this paper, a model is proposed to predict void initiation in superplastic forming based on the study of dominant micro-mechanisms. For this purpose, a constitutive model is proposed that considers micro-mechanisms of superplastic forming including: grain interior deformation, grain boundary sliding and grain boundary diffusion. The possibility of void initiation around a second phase particle is evaluated by calculating relative velocity between two adjacent grains and mass transportation around the particle due to diffusion. The proposed model is calibrated for an Aluminum alloy at 500℃ and 550℃. Then the model is used to predict void numbers in various strains and strain rates at these temperatures. Model predictions are in excellent agreement with experimental data. It is shown that grain boundary sliding has a significant role in void initiation of superplastic materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3