A simple implementation of localizing gradient damage model in Abaqus

Author:

Zhang Yi1ORCID,Xu Yanjie1,Wang Yihe2,Poh Leong Hien1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore

2. Ocean Academy, Zhejiang University, Zhejiang, China

Abstract

With the localizing gradient enhancement, a damage model for quasi-brittle materials is able to achieve regularized softening responses, with localized damage profiles corresponding to the development of macroscopic cracks, to resolve the numerical spurious effects induced by the conventional gradient enhancement. The typical implementation strategy for a gradient enhanced model is to solve the system of governing equations simultaneously. Focusing on the finite element (FE) package Abaqus, a user element subroutine is required to define the finite elements with additional degrees of freedom for the nonlocal field. Moreover, with user elements, additional effort is required to visualize the numerical results. To an inexperienced engineer/researcher, these requirements can be challenging. In this paper, a simple implementation of the localizing gradient damage model is elaborated. By utilizing the in-built coupled thermo-mechanical elements in Abaqus, the user only needs to define the material constitutive laws, as well as the sensitivity terms with respect to the field variables. Post-processing of results can be done directly in Abaqus. The applicability and ease of implementation are demonstrated via several examples, including those that utilize the Abaqus features of element deletion, contact between surfaces, as well as the incorporation of cohesive elements. Sample files can be downloaded from https://github.com/leonghien/Localizing-Gradient-Damage-with-UMAT-UMATHT

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3