Modeling and experimental study on the mechanical behavior of glass/basalt fiber metal laminates after thermal cycling

Author:

Azghan Mehdi Abdollahi1,Bahari-Sambran F1,Eslami-Farsani Reza1ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

In the present study, the effect of thermal cycling and stacking sequence on the tensile behavior of fiber metal laminate (FML) composites containing glass and basalt fibers was investigated. To fabricate the FML samples, fibers reinforced epoxy composite were sandwiched between two layers of 2024-T3 aluminum alloy sheet. 55 thermal cycles were implemented at a temperature range of 25–115°C for 6 min. The tensile tests were carried out after the thermal cycling procedure, and the results were compared with non-thermal cycling specimens. Scanning electron microscopy (SEM) was employed for the characterization of the damage mechanisms. The FMLs containing four basalt fibers’ layers showed higher values of tensile strength, modulus, and energy absorption. On the other hand, the lowest strength and fracture energy were found in the asymmetrically stacked sample containing basalt and glass fibers, due to weak adhesion between composite components (basalt and glass fibers). The lowest tensile modulus was found in the sample containing glass fibers that was due to the low modulus of the glass fibers compared to basalt fibers. In the case of the samples exposed to thermal cycling, the highest and the lowest thermal stabilities were observed in basalt fibers samples and asymmetrically stacked samples, respectively. In accordance with the experimental results, a non-linear damage model using the Weibull function and tensile modulus was employed to predict the stress-strain relationship. The simulated strain–strain curves presented an appropriate agreement with the experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3