Affiliation:
1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, USA
Abstract
It has been shown in our previous effort in the development of an energy-based fatigue life prediction framework that, in order to obtain the fatigue toughness of a nonviscoplastic material at room temperature from the areas of hysteresis loops, a fatigue test need to be conducted at the ideal frequency to minimize the effect of nondamaging energy. For aluminum 6061-T6, the ideal frequency is 0.05 Hz. A fatigue test with such a low frequency requires extensive time to complete. Therefore, the present investigation focuses on modifying the energy-based framework in order to obtain the fatigue toughness from fatigue tests conducted at an arbitrary frequency higher than the ideal frequency. The fatigue toughness is calculated from the average strain range developed in a material during a fatigue test and the Ramberg–Osgood cyclic parameters. The measurement of average strain range by an extensometer associated with a nonviscoplastic test specimen at room temperature is independent of the test frequency. The cyclic parameters are obtained from the fatigue lives at two different stress ranges which are also independent of the test frequency at room temperature. Similar to the case of the previous framework, the modified framework is found to predict the room temperature fatigue life of aluminum 6061-T6 with a promising accuracy.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献