Gradient Damage Models and Their Use to Approximate Brittle Fracture

Author:

Pham Kim1,Amor Hanen2,Marigo Jean-Jacques3,Maurini Corrado4

Affiliation:

1. Institut Jean Le Rond d'Alembert, UPMC Univ Paris 06 (UMR 7190), 4 place Jussieu 75252, Paris, France, Institut Jean Le Rond d'Alembert, CNRS (UMR 7190), 4 place Jussieu 75252, Paris, France

2. LPMTM (CNRS-UPR 9001) and LAGA (CNRS-UMR 7539), Institut Galilée, Univ Paris-Nord, 99 avenue Jean-Baptiste Clément 93430, Villetaneuse, France, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 31 avenue de la Division Leclerc - 92260, Fontenay-aux-Roses, France

3. Laboratoire de Mécanique des Solides, Ecole Polytechnique 91128, Palaiseau, France

4. Institut Jean Le Rond d'Alembert, UPMC Univ Paris 06 (UMR 7190), 4 place Jussieu 75252, Paris, France, Institut Jean Le Rond d'Alembert, CNRS (UMR 7190), 4 place Jussieu 75252, Paris, France,

Abstract

In its numerical implementation, the variational approach to brittle fracture approximates the crack evolution in an elastic solid through the use of gradient damage models. In this article, we first formulate the quasi-static evolution problem for a general class of such damage models. Then, we introduce a stability criterion in terms of the positivity of the second derivative of the total energy under the unilateral constraint induced by the irreversibility of damage. These concepts are applied in the particular setting of a one-dimensional traction test. We construct homogeneous as well as localized damage solutions in a closed form and illustrate the concepts of loss of stability, of scale effects, of damage localization, and of structural failure. Considering several specific constitutive models, stress—displacement curves, stability diagrams, and energy dissipation provide identification criteria for the relevant material parameters, such as limit stress and internal length. Finally, the 1D analytical results are compared with the numerical solution of the evolution problem in a 2D setting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 499 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3