Fatigue Life Prediction under Random Loading Conditions in 7475-T7351 Aluminum Alloy using the RMS Model

Author:

Kim Sang Tae1,Tadjiev Damir2,Yang Hyun Tae1

Affiliation:

1. Department of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan, 712-749 South Korea

2. Department of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan, 712-749 South Korea,

Abstract

This article is concerned with the fatigue life prediction in specimens of 7475-T7351 high strength aluminum alloy subjected to random fatigue loading. Fatigue life predictions are made using the root mean square model. This model is chosen because it has been defined as the most simple and effective one for fatigue life prediction in the components subjected to random loading by the authors of this article. The analysis procedure used in this study is relatively simple. The loading history for each specimen is analyzed to determine the root mean square maximum and minimum stresses and predictions are then made by assuming that the tests have been conducted under constant amplitude loading at the root mean square maximum and minimum stresses. The ratios of the predicted lives range from 3.22 to 1.52. These ratios are fairly good considering that the normal scatter in fatigue crack growth rates may range from a factor of two to four under identical load conditions. Moreover, an attempt has been made to improve prediction procedure using Forman’s equation applied in the root mean square model. While using the improved prediction procedure, the ratios of the predicted lives range from 1.35 to 0.62 (e.g., error bound is reduced almost five times: from 222 to 48). Only relatively simple computer programs (Microsoft Excel for load history analysis and Mathematica for performing calculations) and a desktop computer are employed to make predictions. Improved prediction procedure allows more precise prediction of fatigue life as well as helps to obtain better prediction ratios but further experimental work should be performed to verify the validity of the attempt.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3