Defect evaluation of the honeycomb structures formed during the drilling process

Author:

Ghabezi P1234,Farahani M1,Shahmirzaloo A1ORCID,Ghorbani H5,Harrison NM234

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Iran

2. Mechanical Engineering, National University of Ireland Galway, Ireland

3. I-Form Advanced Manufacturing Research Centre, Ireland

4. IComp Irish Composites Centre, Ireland

5. Isfahan University of Technology, Iran

Abstract

In this paper, a comprehensive experimental investigation was carried out to precisely characterize the delamination and uncut fiber in the drilling process. A digital imaging procedure was developed in order to calculate the damage resulted from the drilling process. A novel method is proposed in this article based on image intensity to verify the obtained results. A full factorial experimental design was performed to evaluate the importance of the drilling parameters. Among other process parameters, feed rate, cutting speed, and tool diameter are the principal factors responsible for the delamination damage size during the drilling. The drilling process was assessed based on two proposed incurred damage factors, specifically the delamination factor and uncut fiber factor. Experimental results demonstrated that the feed rate was the paramount parameter for both delamination and uncut fiber factors. It was observed that both factors increased with an increase in the feed rate. Additionally, by increasing the tool diameter, the delamination and uncut fiber factors significantly increase. The effects of the cutting speed on damage factors were not linear. The minimum delamination factor and uncut fiber factor were obtained at the cutting speed of 1500 and 2500 r/min, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3