Affiliation:
1. Hubei Province Key Lab Process Mineral Resources & Environment, Department of Mining Engineering, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
Abstract
Hydraulic fracture propagation is hard to predict due to natural joints and crustal stress. This process may lead to uncontrollable changes in hydrogeological conditions. Therefore, prediction and control of fracture propagation are paramount to permeability increase in ore-bearing reservoir. The coupled fluid-solid model was utilized to predict the hydraulic fracture propagation in low-permeability sandstone of a uranium mine. For this study, the model was modified to allow fractures to propagate randomly by using the cohesive zone method. The simulation was developed on a three-step process. First, geological data required to run the model, including crustal stress, strength and permeability, were assembled. Next, fracture propagation under different conditions of stress and injection volume were simulated. In the final step, experimental data required to validate the model were obtained. The simulation results indicate that the principal stress, distribution and orientation of natural fracture have vital influence on fracture propagation and induced complex fracture network. This work provides a theoretical basis for the application of hydraulic fracture in low-permeability sandstone reservoir and ensures the possibility to predict the generation of complex fracture network.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献