Numerical model on predicting hydraulic fracture propagation in low-permeability sandstone

Author:

Shi Ji1ORCID,Zhang Jianhua1ORCID,Zhang Chunyang1ORCID,Jiang Tingting1ORCID,Huang Gang1ORCID

Affiliation:

1. Hubei Province Key Lab Process Mineral Resources & Environment, Department of Mining Engineering, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Hydraulic fracture propagation is hard to predict due to natural joints and crustal stress. This process may lead to uncontrollable changes in hydrogeological conditions. Therefore, prediction and control of fracture propagation are paramount to permeability increase in ore-bearing reservoir. The coupled fluid-solid model was utilized to predict the hydraulic fracture propagation in low-permeability sandstone of a uranium mine. For this study, the model was modified to allow fractures to propagate randomly by using the cohesive zone method. The simulation was developed on a three-step process. First, geological data required to run the model, including crustal stress, strength and permeability, were assembled. Next, fracture propagation under different conditions of stress and injection volume were simulated. In the final step, experimental data required to validate the model were obtained. The simulation results indicate that the principal stress, distribution and orientation of natural fracture have vital influence on fracture propagation and induced complex fracture network. This work provides a theoretical basis for the application of hydraulic fracture in low-permeability sandstone reservoir and ensures the possibility to predict the generation of complex fracture network.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3