Experimental and damage model study of layered shale under different moisture contents

Author:

Xian-yin Qi12,Dian-dong Geng1ORCID,Ming-zhe Xu1,Ting Ke1

Affiliation:

1. Research Center of Geomechanics and Geotechnical Engineering, Yangtze University, Jing zhou, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

Abstract

To investigate the mechanical properties and damage evolution law of layered shale under varying moisture contents, we conducted triaxial compression experiments on rock samples with different bedding angles and moisture levels. This study analyzed the variations in mechanical properties of layered shale under different conditions, and established a predicted model for elastic modulus based on different bedding angles and moisture content. Additionally, the damage constitutive model of layered shale was improved. The study revealed that shale’s mechanical properties display anisotropy, which is influenced by the bedding angles and moisture contents. The elastic modulus of the rock increases with the rise of bedding angle, exhibiting a ‘U’-shaped change. Conversely, the mechanical properties of rocks deteriorate, and their brittleness weakens with the increase in moisture content. When the confining pressure increased, the overall mechanical properties of shale were enhanced, and the influence of bedding on shale was weakened, but the deteriorating effect of water on rocks was hardly affected. Based on the above experiments, a predicted model of equivalent elastic modulus of shale considering the coupling effect of bedding and different moisture contents was proposed, which could effectively predict the elastic modulus of layered shale with different moisture content under different confining pressures. Furthermore, based on the predicted model of elastic modulus, an improved damage constitutive model of layered shale under triaxial loading was established, and the damage accumulation trend of layered shale was obtained, which showed an “S”-shaped change with strain. Under the coupling effect of bedding and different moisture contents, the damage of shale was advanced, but the accumulation rate of damage slowed down. With the increase of confining pressure, the influence of bedding and moisture content on the damage characteristics of shale decreased, and the damage curves under different conditions gradually tended to isotropy. The developed damage constitutive model for layered shale under different moisture contents provides theoretical support for the study of reservoir fracturing and wellbore stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3