Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils

Author:

Jyoti Bora Manash1,Bordoloi Sanandam1ORCID,Kumar Himanshu1,Gogoi Nirmali2,Zhu Hong-Hu3,Sarmah Ajit K4,Sreeja P1,Sreedeep S1,Mei Guoxiong5

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, India

2. Department of Environmental Science, Tezpur University, Tezpur, India

3. School of Earth Sciences and Engineering, Nanjing University, Nanjing, China

4. Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand

5. Department of Civil Engineering and Architecture, Guangxi University, Nanning, China

Abstract

Growing awareness of sustainability in the landfill cover system has increased the use of biochar amendment for degraded landfill surface soils. Hydraulic and vegetative benefits of biochar on cover soil have been studied in the past, while ignoring mechanical characteristics, which is important to understand progressive failure of landfill infrastructure. In this study, the mechanical characteristics of four soil–biochar composites were investigated by conducting 81 unconfined compressive strength test. The results based on four in-house produced biochar were used to study the effect of compaction state (density, moisture content) and biochar percentage (5% and 10%) on unconfined compressive strength of soil–biochar. The ductility of soil–biochar was investigated for all the four biochars. Results from this study indicate a contrasting observation of strength gain depending on the type of biochar. The unconfined compressive strength of soil–biochar is potentially influenced by the different surface functional groups of biochar (hydrophilicity/hydrophobicity) and soil-biochar interlocking. It was noted that the peanut shell biochar gave comparable unconfined compressive strength of soil–biochar with that of bare soil for different compaction state. However, a diminution in the unconfined compressive strength was observed for all the other three soil–biochar sourced from water hyacinth, saw dust, and poultry litter. The study indicates that the use of biochar in soils does not ensure an improvement in the strength of soil–biochar. Enhancement in ductility was found for all the four soil–biochar irrespective of compaction state. Improvement in ductility was maximum when the soil–biochar is compacted at the dry state of optimum. Plant-based biochar has higher potency to increase the ductility of soil as compared to the animal-based biochar. Our study identifies peanut shell biochar ideal for landfill cover amendment material, considering its mechanical characteristics and design criterion. Soil biochar composite from water hyacinth, saw dust, and poultry litter can be used for potential application in green-infrastructure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3