Hierarchical multiscale simulations of crystalline β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX): Generalized interpolation material point method simulations of brittle fracture using an elastodamage model derived from molecular dynamics

Author:

Jiang Shan12,Tao Jun34,Sewell Thomas D1,Chen Zhen34

Affiliation:

1. Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA

2. Department of Mechanical Engineering, University of Mississippi, University, MS, USA

3. Department of Civil & Environmental Engineering, University of Missouri-Columbia, Columbia, MO, USA

4. State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Liaoning, China

Abstract

A predictive constitutive model for single-crystal β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) under simple loading conditions was developed using a hierarchical multiscale approach based on molecular dynamics and the generalized interpolation material point method. Basic mechanical behaviors, such as elastic and damage responses to external loading conditions, were predicted at the molecular level using molecular dynamics. The molecular dynamics results were used to construct a preliminary elastodamage model for the generalized interpolation material point (GIMP) simulations. Anisotropy of the β-HMX crystal, which affects the secant elastodamage stiffness tensor in the constitutive model, was taken into account. The GIMP method was used to deal with large deformation and fracture. GIMP results predicted using the hierarchically obtained elastodamage model are shown to be in close agreement with the molecular dynamics predictions. Although the evolution of local damage surfaces from GIMP is not as detailed as that from molecular dynamics, the main features of nonlinear elastodamage in the stress–strain relationship are captured by GIMP at reduced computational expense. Thus, this preliminary hierarchical multiscale procedure can be considered as useful for simulations of elastodamage behaviors in brittle materials for engineering purposes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3