Numerical Modeling of Fatigue Crack Growth in Single Crystals Based on Microdamage Theory

Author:

Aslan Ozgur1,Quilici Stéphane2,Forest Samuel2

Affiliation:

1. Centre des Matériaux, Mines ParisTech, UMR CNRS 7633, BP87, 91003 Evry Cedex, France,

2. Centre des Matériaux, Mines ParisTech, UMR CNRS 7633, BP87, 91003 Evry Cedex, France

Abstract

Proper life-time prediction modeling of single crystalline components is of increasing importance due to their common use in turbine industry. Viscoplastic damage approaches are of great interest in that context. However, mechanical properties of single crystals are strongly anisotropic and nonlinear in service conditions, bringing certain complexity into constitutive and numerical modeling. The aim of this work is to develop a thermodynamically consistent constitutive model based on generalized continua in order to simulate fatigue crack initiation and growth in single crystals. For that purpose, a standard crystal plasticity model is taken as a basis and coupled with the continuous damage model developed by Marchal et al. (2006a) [Marchal, N., Forest, S., Remy, L. and Duvinage, S. (2006a). Simulation of Fatigue Crack Growth in Single Crystal Superalloys Using Local Approach to Fracture, In: Moinereau, D., Steglich, D. and Besson, J. (eds.), Local Approach to Fracture, 9th European Mechanics of Materials Conference, Euromech-Mechamat, Moret-Sur-Loing, France, Presses de l’Ecole des mines de Paris, pp. 353-358]. As a variant of micromorphic theory, microdamage approach is applied to the model in order to obtain a regularized continuum damage formulation which solves mesh dependency problem by introducing an intrinsic length scale. A detailed finite element implementation procedure and its validation for monotonic crack growth are-shown. Fatigue crack growth analyses have been performed on a single edge notched geometry and a comparison between numerical and experimental results is presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3