Fracture mechanics approach to minimum reinforcement design of fibre-reinforced and hybrid-reinforced concrete beams

Author:

Rubino Alessio1ORCID,Accornero Federico2ORCID,Carpinteri Alberto2

Affiliation:

1. Dept of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy

2. Dept of Civil Engineering and Intelligent Construction, Shantou University, Shantou, P.R. China

Abstract

The problem of the minimum reinforcement condition in fibre-reinforced and hybrid-reinforced concrete flexural elements is addressed in the framework of fracture mechanics by means of the Updated Bridged Crack Model (UBCM). The model describes the crack propagation process occurring in the critical cross-section of the reinforced member, by assuming the composite as a multiphase material, whereby the toughening contribution of the cementitious matrix and of the reinforcements are independently evaluated. The key-point of the discussion is that, when the influence of the matrix nonlinearities on the response is neglected, the minimum reinforcement condition is defined by a linear relationship between the critical values of two dimensionless numbers: (i) the bar- reinforcement brittleness number, NP , proportional to the steel-bar area percentage, ρ; (ii) the fibre- reinforcement brittleness number, NP,f, proportional to the fibre volume fraction, Vf. The model is applied to several experimental campaigns of the literature, in order to assess its suitability in the minimum reinforcement design of reinforced members in a unified fracture mechanics-based framework.

Publisher

SAGE Publications

Reference45 articles.

1. A fracture mechanics approach to the design of hybrid-reinforced concrete beams

2. Post-cracking regimes in the flexural behaviour of fibre-reinforced concrete beams

3. Ultra-low cycle fatigue (ULCF) in fibre-reinforced concrete beams

4. ACI Committee 544 (2018) ACI PRC-544.4-18: Guide to design with fiber-reinforced concrete. American Concrete Institute (ACI). Farmington Hills, MI.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3