Statistical damage constitutive model based on energy conversion for rocks

Author:

Hongming Cheng12ORCID,Xiaobin Yang3,Jie Lu12,Chuanlong Dong12,Yongqing Lan12

Affiliation:

1. The Cultivation Base of Shanxi Key Laboratory of Coal Mine Water Jet Technology and Equipment, Shanxi Datong University, Datong, China

2. School of Coal Engineering, Shanxi Datong University, Datong, China

3. School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing, China

Abstract

The nonlinearity of the constitutive relation for rocks becomes more prominent with a more complex physical-mechanical environment and mechanical behavior. The accurate establishment of the constitutive relation affects the determination of rock deformation and damage state from physical features. In this study, a novel statistical damage constitutive model for rocks is proposed based on quantified energy conversion. The novelty of the model is that the nature of rock damage before and after damage stress is considered. In the constitutive model, the evolution characteristics of energy conversion show a five-stage evolution with a ‘spoon’ form and correspond to the rock deformation and damage process, which can be fitted with the modified GaussAmp function; the damage variable is deduced by the Weibull distribution with energy conversion as the distribution variable, which presents a monotonic decrease caused by initial defects before the σcd and shows a ‘S’ shape caused by nascent cracks after the σcd. Furthermore, triaxial test data of three types of rocks under different confining pressures were used to verify the proposed model, and the results were in good agreement with the test data in most cases. The characteristics of the crack closure stage, peak stress, residual strength, and stress drop process are controlled by the model parameters, which can be determined using experimental data. As these parameters definitely have a physical meaning and a relation to the confining pressure, the proposed model has the potential to be used in rock engineering.

Funder

University Science and Technology Innovation Program of Shanxi Province

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3