Size Effect in Thermally Damaged Concrete

Author:

Di Luzio Giovanni1,Muciaccia Giovanni2,Biolzi Luigi2

Affiliation:

1. Department of Structural Engineering, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milan, Italy,

2. Department of Structural Engineering, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Abstract

Detailed experimental observations and numerical simulations are presented for the evaluation of residual properties of high-strength concrete specimens after exposure to high temperatures. Heated and nonheated notched four-point bending specimens were tested at ambient conditions approximately 1 month after exposure to the high temperature. Residual strength and post-peak response were monitored using a closed-loop load frame, and the fracture process zone was observed using Electronic Speckle Interferometry. The symmetric over-nonlocal formulation of a microplane model was used for interpreting the experimental investigation. The size-effect results were used to identify the true tensile strength and the initial fracture energy corresponding to the peak and the initial post-peak slope of a linear cohesive crack law. This study reveals that the material ductility increases with the thermal damage, which is explained by the increase of the fracture process zone size and the characteristic length.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3