Revisiting the fracture forming limits of bulk forming under biaxial tension

Author:

Sampaio Rui FV1,Pragana João PM1,Bragança Ivo MF2,Silva Carlos MA1,Martins Paulo AF1ORCID

Affiliation:

1. IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Portugal

2. CIMOSM, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

Abstract

The formability limits of bulk metal forming in principal strain space and in the effective strain vs. stress-triaxiality space are characterized by an uncertainty region in which cracks may be triggered by tension (mode I of fracture mechanics) or by out-of-plane shear (mode III). The problem in obtaining experimental data in this region has been known for a long time and the main objective of this paper is to present a new upset formability test geometry that can effectively contribute to the characterization of the formability limits of bulk metal forming parts subjected to biaxial tension. Alongside with this objective, this paper also presents an analytical expression for converting the fracture forming limit line corresponding to crack opening by mode III in principal strain space into a hyperbolic fracture limit curve in the effective strain vs. stress-triaxiality space. The overall methodology employed by the authors combines experimentation along with analytical and numerical modelling, and the contents of the paper is a step towards diminishing the actual lack of knowledge regarding failure by fracture in bulk metal forming parts subject to stress-triaxiality values beyond uniaxial tension. Results show that a new uncoupled ductile fracture criterion built upon combination of the integrands of the Cockcroft-Latham and McClintock criteria can be successfully used to model the physics of the bulk metal forming limits for the entire range of stress-triaxiality values corresponding to cracking on free surfaces.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3