A Combined Model for Hardening, Softening, and Damage Processes in Advanced Heat Resistant Steels at Elevated Temperature

Author:

Naumenko Konstantin1,Altenbach Holm2,Kutschke Andreas2

Affiliation:

1. Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle, Germany,

2. Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle, Germany

Abstract

Phenomenological constitutive equations that describe inelastic behavior of advanced steels at elevated temperature are developed. To characterize hardening, recovery, and softening processes, a composite model with creep-hard and creep-soft constituents is applied. The volume fraction of the creep-hard constituent is assumed to decrease toward a saturation value. This approach reproduces well the primary creep as a result of stress redistribution between constituents and tertiary creep as a result of softening. To describe the whole tertiary creep stage, a damage variable in the sense of continuum damage mechanics is introduced. The material parameters and the response functions in the model are calibrated against experimental creep curves for X20CrMoV12-1 steel. For the verification, simulations of the inelastic response are performed and the results compared with experimental data including creep under stress change conditions and stress-strain response under constant strain rate. Furthermore, the lifetime predictions are analyzed and compared with the published creep rupture strength data. The results show that the consideration of both softening and damage processes is necessary to characterize the long-term strength in a wide stress range. Finally, the model is generalized to the multi-axial stress state.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3