Micromechanics-based Interfacial Debonding Model for Damage of Functionally Graded Materials with Particle Interactions

Author:

Paulino G. H.,Yin H. M.1,Sun L. Z.2

Affiliation:

1. Department of Civil and Environmental Engineering Newmark Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

2. Department of Civil and Environmental Engineering University of California, Irvine, CA 92697, USA;

Abstract

A micromechanical damage model is developed for two-phase functionally graded materials (FGMs) considering the interfacial debonding of particles and pair-wise interactions between particles. Given an applied mechanical loading on the upper and lower boundaries of an FGM, in the particle—matrix zones, interactions from all other particles over the representative volume element (RVE) are integrated to calculate the homogenized elastic fields. A transition function is constructed to solve the elastic field in the transition zone. The progressive damage process is dependent on the applied loading and is represented by the debonding angles which are obtained from the relation between particle stress and interfacial strength. In terms of the elastic equivalency, debonded, isotropic particles are replaced by perfectly bonded, orthotropic particles. Correspondingly, the effective elasticity distribution in the gradation direction is solved. The computational implementation is discussed and numerical simulations are provided to illustrate the capability of the proposed model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3