Creep damage model considering unilateral effect based on bimodulus theory

Author:

Guo Yuhao1,Liu Gang12ORCID,Liu Huaqing1,Huang Yi12

Affiliation:

1. Faculty of Vehicle Engineering and Mechanics, School of Naval Architecture, Dalian University of Technology, Dalian, China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China

Abstract

Based on the continuous damage mechanics (CDM) theory, Ambartsumyan bimodulus theory and creep damage theory, a bimodulus creep damage constitutive model is proposed in this paper. The model is able to describe the damage-induced unilateral behaviour related to the microdefect closure effect. The unilateral behaviour is considered a special bimodulus property. By judging the tension or compression state in bimodulus theory, different elasticity properties matrixes are selected according to signs of principal stresses. Then, an elasticity properties matrix is linearly converted to a general stress space. The model effectively solves the difficulty of determining tension or compression in complex stress states when the unilateral effect of damage is considered in the analysis of actual structures. The tangent elasticity matrix is used to improve the convergence of the proposed algorithm. In this study, a numerical simulation of the proposed model is achieved by writing subroutines in the FORTRAN language. A numerical example of a hole-in-plate structure under uniaxial stress is analysed. By comparing the results with those obtained by the traditional model, which does not consider the unilateral effect of damage, it is demonstrated that the proposed model is capable of describing the damage-induced unilateral behaviour related to microcracked closure effects. The numerical example validates the effectiveness and realizability of the proposed model.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3