Strain Gradient Effect in Finite Elasto-plastic Damaged Materials

Author:

Cleja-Ţigoiu Sanda1,Ţigoiu Victor2

Affiliation:

1. Faculty of Mathematics and Computer Science, University of Bucharest, str. Academiei 14, 010014-Bucharest, Romania,

2. Faculty of Mathematics and Computer Science, University of Bucharest, str. Academiei 14, 010014-Bucharest, Romania

Abstract

In this article we propose a strain gradient model for elasto-plastic materials in which there exist zones with structural inhomogeneities, characterized by nonlocal deformations. We assume the existence of an anholonomic configuration, called damaged configuration, which is associated with the second-order plastic deformation. We proved how the damage may be coupled to the second-order plasticity introducing a tensorial damage variable, Qd, as a measure of the nonmetricity of the plastic Bilby-type part of the connection, which characterizes peculiar structural defects. The constitutive and evolution equations are subjected to be compatible with the principle of the imbalanced free energy, which is applied for isothermal processes. The free energy density function Ψ, is represented as a function of second-order elastic deformation and it depends on the damaged configuration, K, through the second-order plastic deformation. At the level of plastically deformed configuration, the effects of macro- and microforces are cumulated into the internal power. Two possible nonlocal evolution equations to describe plastic behavior are derived as a consequence of balance equation for microforces. Finally, we look at the influence of the strain gradient in a simple model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Reference31 articles.

1. Bilby, B.A. ( 1960). Continuous Distribution of Dislocations. In: Sneddon, I.N. and Hill, R. (eds), Progress in Solid Mechanics, I, Amsterdam, North-Holland , pp. 329-398.

2. Modeling dislocations and disclinations with finite micropolar elastoplasticity

3. Couple stresses and non-Riemannian plastic connection in finite elasto-plasticity

4. Material forces in finite elasto-plasticity with continuously distributed dislocations

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3