Fully integrated multi-scale modelling of damage and time-dependency in thermoplastic-based woven composites

Author:

Praud F1,Chatzigeorgiou G1,Meraghni F1ORCID

Affiliation:

1. Arts et Métiers Institute of Technology, CNRS, Université de Lorraine, Metz, France

Abstract

In this work, a multi-scale model established from the concept of periodic homogenization is utilized to predict the cyclic and time-dependent response of thermoplastic-based woven composites. The macroscopic behaviour of the composite is determined from finite element simulations of the representative unit cell of the periodic microstructure, where the local non-linear constitutive laws of the components are directly integrated, namely, the matrix and the yarns. The thermoplastic matrix is described by a phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. For the yarns, a hybrid micromechanical–phenomenological constitutive model accounting for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network is utilized. The capabilities of the overall multi-scale model are validated by comparing the numerical predictions with experimental data. Further illustrative examples are also provided, where the composite undergoes time-dependent deformations under uni-axial and non-proportional multi-axial loading paths. The multi-scale model is also employed to analyze the influence of the local deformation processes on the macroscopic response of the composite.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3