Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites

Author:

Pandya KS1,Kumar Ch V Sesha1,Nair NS1,Patil PS1,Naik NK1

Affiliation:

1. Aerospace Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

A generalized analytical formulation is presented for the prediction of ballistic impact behavior of 2D woven fabric composite laminates impacted with a rigid cylindrical projectile. The formulation is valid for a wide range of laminate thicknesses. The formulation is based on stress wave propagation and energy balance between the projectile and the composite target. During the ballistic impact event, the energy lost by the projectile is absorbed by the target through various damage and energy absorbing mechanisms such as compression of the target directly below the projectile, compression in the region surrounding the impacted zone, shear plugging, stretching and tensile failure of yarns/layers in the region consisting of primary yarns, tensile deformation of yarns/layers in the region consisting of secondary yarns, conical deformation on the back face of the target, delamination, matrix cracking, and friction between the projectile and the target. The formulation presented considers both shear plugging and tensile failure during conical deformation. Solution procedure for the evaluation of ballistic impact performance is presented. Experimental validation is performed on the ballistic impact behavior of two types of composite specimens: 2D plain weave E-glass/epoxy and 2D 8H satin weave T300 carbon/epoxy. Typical results on ballistic limit velocity and energy absorbed by various mechanisms are presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3