A screw dislocation near a damaged arbitrary inhomogeneity–matrix interface

Author:

Kamali Mohammad Taher1ORCID,Shodja Hossein M23ORCID,Masoudvaziri Nima4ORCID

Affiliation:

1. Department of Civil Engineering, University of Hormozgan, Bandar Abbas, Iran

2. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

3. Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran

4. Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, Amherst, NY, USA

Abstract

In the literature, the analytical solutions concerned with the interaction between screw dislocation and surfaces/interfaces have been mainly limited to simple geometries and perfect interfaces. The focus of the current work is to provide an approach based on a rigorous semi-analytical theory suitable for treatment of such surfaces/interfaces that concurrently have complex geometry and imperfect bonding. The proposed approach captures the singularity of the elastic fields exactly. A vast variety of the pertinent interaction problems such as dislocation near a multi-inhomogeneity with arbitrary geometry bonded imperfectly to a matrix, dislocation near the free boundaries of a finite elastic medium of arbitrary geometry, and so on is considered. In the present approach the out-of-plane component of the displacement in each domain is decomposed as the displacement corresponding to a screw dislocation in a homogeneous elastic body of infinite extent and the disturbance displacement due to the interaction. Subsequently, the disturbance displacement in each medium is expressed in terms of eigenfunction expansion. Damaged interfaces are modeled by a spring layer of vanishing thickness, and the amount of damage is controlled via the stiffness of the spring. For the illustration of the robustness of the proposed methodology a variety of examples including the interaction of a screw dislocation with a circular as well as a star-shaped inhomogeneities, two interacting inhomogeneities, imperfectly bonded to an unbounded medium are given. Also, examples for highlighting the effect of free surfaces in the case of finite domains are provided. It is revealed that in the cases where matrix is stiffer than the inhomogeneity and the dislocation is inside the inhomogeneity, or the other way around, then the amount of interface damage can change the sign of the image force.

Funder

Deputy of Research and Technology of University of Hormozgan

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3