Meso-element equivalent method for the simulation of macro mechanical properties of concrete

Author:

Du Xiuli1,Jin Liu1,Ma Guowei2

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, China

2. School of Civil and Resource Engineering, University of Western Australia (UWA), Perth, WA, Australia

Abstract

A meso-element equivalent method is proposed to investigate the macro mechanical properties of concrete. The randomly distributed aggregates with different sizes and shapes are built by using the Monte Carlo simulation approach, and they are discretized into a finite number of identical elements with a characteristic element size. Each meso-element formed is then processed to be a homogeneous and isotropic unit based on homogenization theory of composite materials. There are two key issues emphasized in the present research, they are the equivalence of the mechanical behaviors of the aggregated concrete material and the determination of the mesh-element size, respectively. The classical Voigt parallel approach is applied to establish the equivalent mechanical behaviors of the meso-elements containing the two-phase medium composed of aggregates and mortar matrix. Since the macroscopic nonlinearity of concrete material is essentially attributed to the inherent heterogeneities, the non-homogeneity of concrete is described by the dispersion coefficient of the effective elastic moduli of concrete meso-elements. And the characteristic element size is introduced and determined by means of a statistical analysis of the aggregate sizes and taken as an appropriate mesh size of concrete specimens. The proposed approach reflects the fact that the concrete nonlinearity originates from the inherent heterogeneity. Several two-dimensional samples of concrete specimens are carried out to verify the feasibility and the accuracy of the proposed meso-element equivalent method. Furthermore, the damage process and the deformation of a three-dimensional four-point bending concrete beam are studied. The numerical results show the high efficiency and accuracy of the proposed method. Compared with other meso-mechanical methods, the advantage of the present meso-element equivalent method is that the degrees of freedom of the concrete specimens reduce significantly, making the computational efficiency improved drastically, especially for three-dimensional problems, while the accuracy of the numerical results is acceptable.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3