A Differential CDM Model for Fatigue of Unidirectional Metal Matrix Composites

Author:

Arnold S.M.1,Kruch S.2

Affiliation:

1. National Aeronautics and Space Administration Lewis Research Center Cleveland, OH 44135

2. Office Nationale d'Etudes et de Recherches Aerospatiales 92322 Chatillon, France

Abstract

A multiaxial, isothermal, continuum damage mechanics model for fatigue of a unidirectional metal matrix composite volume element is presented The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model (i.e., evo lutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisot ropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to its isotropic limit, to directly simplify to a previ ously developed and validated isotropic fatigue continuum damage model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Reference44 articles.

1. The determination of the elastic field of an ellipsoidal inclusion, and related problems

2. Micromechanics of defects in solids

3. Nemat-Nasser, S. 1987. "Micromechamcally Based Constitutive Modeling of Inelastic Response of Solids," Constitutive Models of Deformation, J. Chandra and R. P. Srlivastava , eds. Philadelphia, PA: SIAM , pp. 120-129.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Damage analysis of Functionally Graded Materials under strong cyclic loading;Mechanics of Advanced Materials and Structures;2024-04

2. Using XFEM technique to predict the crack growth in the notched plate under high loading cyclic conditions;Mechanics of Advanced Materials and Structures;2023-10-15

3. Micromechanics-Based Modeling of SiC/SiC Ceramic Matrix Composites and Structures;Recent Progress in Materials;2023-06-20

4. Fatigue Failure Predictions of Laminated Composites using Mechanical Properties Degradation and Continuum Damage Models;2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2018-01-07

5. Micromechanics-Based Fatigue Life Prediction of Composites;58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2017-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3