Fatigue–oxidation–creep damage model under axial-torsional thermo-mechanical loading

Author:

Li Dao-Hang1ORCID,Shang De-Guang1ORCID,Cui Jin1,Li Luo-Jin1,Wang Ling-Wan1,Zhang Cheng-Cheng2,Chen Bo3

Affiliation:

1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China

2. Commercial Aircraft Engine Co. Ltd, Aero Engine Corporation of China, Shanghai, China

3. Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing, China

Abstract

A fatigue–oxidation–creep damage model that can take into account the effect of multiaxial cyclic feature on the damage mechanism is proposed under axial-torsional thermo-mechanical fatigue loading. In the proposed model, the effects of non-proportional additional hardening on fatigue, oxidation, and creep damages are considered, and the variation of oxidation damage under different high temperature loading conditions is also described. Moreover, the intergranular creep damage needs to be equivalent to the transgranular damage before accumulating with the fatigue and oxidation damages. The fatigue, oxidation, and creep damages can be expressed as the fractions of fatigue life, critical crack length, and creep rupture time, respectively, which allows the linear accumulation of different types of damages on the basis of life fraction rule. In addition, the proposed model is validated by various fatigue experimental results, including uniaxial thermo-mechanical fatigue, axial-torsional thermo-mechanical fatigue, and isothermal axial-torsional fatigue under proportional and non-proportional loadings. The results showed that the errors are within a factor of 2.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3