Viscoplastic damage model for austenitic stainless steel and its application to the crack propagation problem at cryogenic temperatures

Author:

Lee Chi-Seung1,Yoo Byung-Moon,Kim Myung-Hyun,Lee Jae-Myung

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Republic of Korea

Abstract

Austenitic stainless steel, or the so-called transformation-induced plasticity steel, exhibits high nonlinearity when strain-induced martensitic transformation occurs at various strain rates and temperatures, especially at cryogenic temperatures and high strain rates. The strong hardening, which is caused by the strain-induced martensitic transformation, is an important property of austenitic stainless steel. In this work, a viscoplastic model that considers the martensitic phase transformation of austenitic stainless steel is introduced in order to identify nonlinear mechanics, including the strong hardening phenomenon. In addition, the well-known damage mechanics approach is also used to predict material fractures under arbitrary loads. In order to apply the developed viscoplastic model to failures at the structural level, the crack propagation characteristics of an austenitic stainless steel plate are also predicted on the basis of the ABAQUS user-defined subroutine UMAT. In order to demonstrate the feasibility of the model, the simulation results are compared with the uniaxial tensile and crack propagation test results for the austenitic stainless steel plate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3