Damage and perforation resistance behaviors induced by projectile impact load on bonding-patch repaired and scarf-patch repaired composite laminates

Author:

Jiang Hongyong12,Ren Yiru12,Zhang Songjun12,Liu Zhihui12,Yu Guoqing12,Xiang Jinwu3

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, China

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan, China

3. School of Aeronautic Science and Engineering, Beihang University, Beijing, China

Abstract

A three-dimensional continuum damage model is proposed to analyze the damage and perforation resistance behaviors of bonding-patch and scarf-patch repaired composite laminates under projectile impact load. Coupling with modified 3D-Hashin failure criteria, a linear-exponential law due to fiber pull-out failure and an exponential law are used to predict tensile and compressive softening processes of materials, respectively. A cohesive interaction based on triangle traction–separation law and mixed-mode fracture energy method is applied for interface debonding damages between patch/lamina, patch/patch and lamina/lamina. Comparisons are made between numerical results and several available test data for different impact offsets. The perforation resistance and interface debonding damage mechanisms are extensively discussed using finite element analysis. Further, perforation resistance behaviors of laminate with six different patch-repair patterns are assessed. Effects of initial velocity of projectile on residual velocity and energy-absorption are discussed. A residual velocity error within 7.3% and energy-absorption error within 9.2% is found between simulations and tests. Consistent failure modes including fiber fracture, matrix cracking, delamination and interface debonding are also identified. As the projectile invades patches, interface debonding damage in patches is accumulated rapidly, especially for larger impact offset. The combined patch-repairs show a reduction of at the most 48.3% in velocity and higher ballistic limit velocities which implies better perforation resistance capacity. The energy-absorption almost increases with increasing the initial velocity and a decreasing trend in average energy-absorption is found with the increase of impact offset.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3