Neighbourhood-level pedestrian navigation using the construal level theory

Author:

Thompson Sargoni Obi1ORCID,Manley Ed2

Affiliation:

1. University College London, UK

2. School of Geography, University of Leeds, UK

Abstract

Pedestrian navigation decisions take place simultaneously at multiple spatial scales. Yet most models of pedestrian behaviour focus either on local physical interactions or optimisation of routes across a road network. We present a novel hierarchical pedestrian route choice framework that integrates dynamic, perceptual decisions at the street level with abstract, network-based decisions at the neighbourhood level. The framework is based on construal level theory which states that decision makers construe decisions based on their psychological distance from the object of the decision. We implement this route choice framework in a spatial agent-based model in which pedestrian and vehicle agents complete trips in an urban environment. Using global sensitivity analysis techniques, we demonstrate the interaction between route choice components representing decision making at different spatial and temporal scales. Additionally, through comparison to a least cost network model, we demonstrate the increased route heterogeneity produced by this approach. This work could form the basis of an alternative method for producing pedestrian route alternatives. The granularity and scale of the modelled pedestrian trajectories could also help improve appraisals of street infrastructure.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in geospatial approaches to transport networks and sustainable mobility;Environment and Planning B: Urban Analytics and City Science;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3