Affiliation:
1. Department of Geography, The University of Hong Kong, Hong Kong, China; School of Geography and Environment, Jiangxi Normal University, China
2. Department of Geography, The University of Hong Kong, Hong Kong, China
Abstract
Research on the relationship between space and social interaction has focused on indoor spaces, such as museums and offices. However, empirical evidence on the connection between the intensity of social interaction and outdoor public spaces is still lacking. Applying machine learning algorithms to a 9-hour time-lapse video of an urban park, we decipher the effects of two spatial features, edges, and landmarks, on visitors’ activities. We identified dynamic visitor groups in the videos through a graph-based method and mapped the clustering pattern of interaction activities over time and space. In parallel, we used a computer vision algorithm to delineate fixed objects (notably the harbourfront, landside park boundary, a carousel, four benches, three pavilions, and four heart-shaped seating) and dynamic edges (formed by moveable furniture as park visitors repositioned them) onsite. We found that dynamic edges formed by moveable furniture and the fixed edge of a visual landmark consistently attracted more social interaction and group activities. In designing public spaces that encourage group activities, urban planners and designers can leverage the combination of fixed objects and flexible furniture to maximise the choices for visitors and curate a more engaging public open space.
Funder
University Grants Committee
Guangdong New Innovative Strategic Research Fund
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献